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Abstract

Objective—Cross-sectional studies have revealed associations between DNA methylation and 

systemic lupus erythematosus (SLE) outcomes. To study the dynamics of DNA methylation, we 

examined participants from a SLE longitudinal cohort sampled at two time-points.

Methods—One hundred and one participants from the California Lupus Epidemiology Study 

were studied. DNA extracted from blood at cohort enrollment and after two years was analyzed 

using the Illumina EPIC BeadChip. Paired t-tests were utilized to identify changes at 256 

CpG sites previously associated with SLE subtypes as well as genome-wide. Mixed linear 

models were developed to understand the relationship between DNA methylation and disease 

activity, medication use and sample cell proportions, adjusting for age, sex and genetic principal 

components.

Results—The majority of CpGs that were previously associated with SLE subtypes remained 

stable over two years (185 CpGs (72.3%), t-test FDR >0.05). Compared to background genome-

wide methylation, there was an enrichment of SLE subtype associated CpGs that changed 

over time (27.7% vs 0.34%). Changes in cell proportion were associated with changes at 

67 CpGs (p<2.70E-05) and 15 CpGs had at least one significant association with use of an 

immunosuppressive medication.
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Conclusion—In this longitudinal cohort of SLE, we identified a subset of SLE subtype 

associated CpGs that were stable over time and may be useful as biomarkers of disease subtypes. 

Another subset of SLE subtype-associated CpGs changed at a higher proportion compared to the 

genome-wide methylome. Additional studies are needed to understand the etiology and impact of 

these methylation changes in SLE-associated CpGs.

Introduction

Systemic lupus erythematosus (SLE) is a heterogeneous autoimmune disease that affects 

one in 600 women in the United States, and it is among the leading causes of death 

in young females, despite modern treatments.1, 2 Prior studies suggest that epigenetics 

can inform SLE disease heterogeneity and pathophysiology. Epigenetics is the study of 

chromatin modifications, including DNA methylation, that regulate gene expression and cell 

differentiation.3 Changes in methylation of CpG sites within interferon-responsive genes and 

regulatory regions of the genome and in different immune cell types are associated with SLE 

risk, disease activity, and specific organ manifestations such as lupus nephritis.4–9 However, 

causality for these associations cannot be determined given the cross-sectional nature of 

previous studies. Furthermore, the stability of these changes and prognostic implications for 

long term outcomes remain unclear.

There are many challenges in treating SLE patients, and available biomarkers that 

can accurately predict clinical outcomes and response to treatment are lacking. DNA 

methylation derived from whole blood is an attractive biomarker, as samples can be easily 

obtained and do not require isolation of peripheral blood mononuclear cells or cell sorting. 

Thus, whole blood DNA methylation has the potential to be easily applied in clinical 

practice as a tool for precision medicine. Therefore, understanding the longitudinal stability 

and variability of the methylome in patients with SLE is fundamental to its utility as a 

biomarker.

In this work, we investigated the longitudinal trajectory of DNA methylation in whole blood 

among a diverse multi-ethnic cohort of patients with SLE followed over two years. We have 

previously performed an epigenome-wide association study (EWAS) of all participants of 

the California Lupus Epidemiologic Study (CLUES) at cohort enrollment.10 We identified 

three patient subtypes at cohort enrollment based on American College of Rheumatology 

(ACR) classification criteria and subcriteria. We labeled them mild (M), severe 1 (S1) and 

severe 2 (S2), based on the pattern of autoantibodies and internal organ involvement, and 

identified 256 CpGs that were significantly associated with the subtypes, many of which 

mapped to the interferon pathway.

Here, we examined the dynamics of this previously described DNA methylation signature 

as well as the genome-wide longitudinal trajectory of the methylome in members of the 

CLUES cohort (n=101). We studied the impact of disease activity, medication use, cell 

proportions, genetic variation and self-report ethnicity and race on changes in methylation at 

CpG sites.
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Patients and Methods

Subjects

The California Lupus Epidemiology Study (CLUES) is a multi-racial/ethnic cohort of 

individuals with physician confirmed SLE. This study was approved by the Institutional 

Review Board of the University of California, San Francisco. All participants signed a 

written informed consent to participate in the study. Participants were recruited from the 

California Lupus Surveillance Project, a population-based cohort of individuals with SLE 

living in San Francisco County from 2007 to 2009.11 Additional participants residing in 

the geographic region were recruited through local academic and community rheumatology 

clinics and through existing local research cohorts. This study included a subset of 101 

CLUES participants from the following self reported race/ethnicities: white (n=29), Black 

(n=13), Asian (n=34), Hispanic (n=22) and 3 other or unspecified. Clinical and demographic 

characteristics are shown in Table S1.

Study procedures involved an in-person research clinic visit every two years, including 

collection and review of medical records prior to the visit; a history and physical 

examination conducted by a physician specializing in lupus; collection of biospecimens, 

including peripheral blood for clinical and research purposes; and completion of a structured 

interview administered by an experienced research assistant. The average time between 

visits for the 101 participants was 2.3 years with a standard deviation of 0.3. All SLE 

diagnoses were confirmed by study physicians based upon one of the following definitions: 

(a) meeting ≥ 4 of the 11 American College of Rheumatology (ACR) revised criteria for 

the classification of SLE as defined in 1982 and updated in 1997, (b) meeting 3 of the 11 

ACR criteria plus a documented rheumatologist’s diagnosis of SLE, or (c) a rheumatologist 

confirmed diagnosis of lupus nephritis, defined as having evidence of lupus nephritis on 

kidney biopsy. Medication use at the time of blood draw was recorded. For data analyses, 

we grouped immunosuppresants into the following categories: biologics (belimumab, 

abatacept, rituximab), low dose prednisone (<10 mg), moderate or high dose prednisone 

(> 10 mg), antimalarials, calcineurin inhibitors, methotrexate and leflunomide, azathioprine, 

mycophenolate mofetil, and cyclophosphamide. Self-reported race and ethnicity information 

was collected from each study participant.

DNA methylation and quality control

Methylation of genomic DNA from whole blood was profiled using the Illumina 

MethylationEPIC BeadChip. This chip assesses the methylation level of ~850,000 CpGs 

in enhancer regions, gene bodies, promoters, and CpG islands. All subsequent processing 

was done using the R minfi package. Signal intensities were background subtracted using 

the minfi noob function and then quantile normalized.12, 13 Sites with a poor detection rate 

(detection p value > 0.05) in more than 5% of the samples (1,746 CpG sites) were removed. 

Sites where probes were predicted to hybridize to multiple loci (44,097) and sites on non-

autosomal chromosomes (19,627 CpG sites) were removed. We also excluded 91,799 CpGs 

that have been shown to perform poorly due to single nucleotide polymorphisms (SNPs) 

near probes in diverse populations.14 Additionally, we removed 3,413 CpGs where the assay 
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control sample displayed a variance over 0.01 across the 9 plates. After implementing these 

quality control measures, 720,682 CpGs remained for analysis.

DNA genotyping

Genotyping of genomic DNA from blood was performed using the Affymetrix Axiom 

Genome-Wide LAT 1 Array. This genotyping array is composed of 817,810 SNP markers 

across the genome and was specifically designed to provide maximal coverage for diverse 

racial/ethnic populations, including West Africans, Europeans and Native Americans.15 

Samples were retained with Dish QC (DQC) ≥ 0.82. SNP genotypes were first filtered 

for high-quality cluster differentiation and 95% call rate within batches using SNPolisher. 

Additional quality control was performed using PLINK. SNPs having an overall call rate 

less than 95% or discordant calls in duplicate samples were dropped. Samples were dropped 

for unexpected duplicates in IBD (identity by descent) analysis or mismatched sex between 

genetics and self-report; for first-degree relatives, one sample was retained. All samples had 

at least 95% genotyping and no evidence of excess heterozygosity (maximum < 2.5*SD). 

We tested for Hardy-Weinberg equilibrium (HWE) and cross-batch association for batch 

effects using a subset of subjects that were of European ancestry and negative for double-

stranded-DNA antibodies and renal disease to minimize genetic heterogeneity. SNPs were 

dropped if HWE p < 1e-5 or any cross-batch association p < 5e-8. Genetic principal 

components were calculated to account for population structure utilizing the PCAmixdata R 

package.

Genetic Ancestry

We performed an ADMIXTURE16 analysis using genome-wide SNP data to estimate the 

percent contribution of each ancesteral population for each participant in the study. We 

first combined our sample data with 1000 Genomes genotype data and pruned SNPs for 

linkage disequilibrium according to software recommendations, removing each SNP with 

an R2 value greater than 0.1 in a 50 SNP sliding window advanced by 10 SNPs each 

time. After pruning, 162,159 SNPs were used for global ancestry estimation. We then ran 

ADMIXTURE unsupervised assuming 5 subpopulations (K = 5, European/EUR, African/

AFR, East Asian/EAS, South Asian/SAS, and Indigenous American/AMR). We then used 

known labels from 1000 Genomes to determine the ancestry of the estimated proportions for 

each of our subjects for downstream analysis.

Differential methylation analysis

Our analysis pipeline is shown in Figure 1. Samples from different time points were quantile 

normalized together. Principal component analysis (PCA) plots are shown between different 

time points, plates, and race/ethnicity (Fig S1–S3). Significance testing was performed 

utilizing M values, with conversion of effect sizes to Beta values for reporting. To adjust 

for plate, we utilized ComBat.17 To account for cell proportion heterogeneity, we adjusted 

the Beta values with residuals for estimated cell proportions utilizing the reference-based 

Houseman algorithm.18, 19 We initially performed a genome-wide paired t-test of the two 

time points and retained CpG sites that had a false discovery rate (FDR) p value of <0.05 

and an absolute Beta value difference of more than 0.03, as a threshold for an effect size 

to be biologically meaningful.20 We then took a closer look at the previous SLE-subtype 
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associated CpGs within the genome-wide results. We constructed repeated measures mixed 

linear models with DNA methylation as the outcome to investigate the effect of disease 

activity, dsDNA titer at the time of blood draw, lupus nephritis status and medication use 

adjusting for sex, age and genetic principal components (PC1-3). To examine the role of cell 

proportion heterogeneity, significant CpGs from the paired t-tests were re-analyzed without 

adjusting for cell proportions. Change in DNA methylation was modelled with change in 

each cell proportion as a predictor, adjusting for sex, age, and genetic principal components 

(PC1, PC2 and PC3). All association analyses were performed using R version 3.6 and Stata 

13.1. Pathway analysis was performed with ToppFun.21

SLE-subtype associated CpGs enrichment analysis

Enrichment of SLE-subtype associated CpGs in CpGs with a significant change over time 

was determined via the following. Briefly, the methylation variance of the 256 CpGs 

associated with SLE subtypes at cohort enrollment was determined. Then, randomly selected 

256 CpG sites with a similar methylation variance distribution than SLE subtype associated 

CpGs throughout the genome were tested to see if there was any difference in methylation 

at the two time points (paired t-test). We did this for a total of 100 random samples. Results 

were compared to CpGs associated with SLE subtypes.

Statistical methylation quantitative trait loci (meQTLs) analysis

We had previously reported on meQTL analysis findings on SLE-subtype associated 

CpGs at cohort enrollment.10 Briefly, with this was performed by fitting a linear model 

adjusted for sex, age, cell proportions alcohol use, smoking status, the top three genetic 

principal components, and the top three medication principal components using the 

Matrix eQTL R package.22 There are also larger established datasets of CpGs in healthy 

individuals with evidence of genetic control.23 Combining our own findings and available 

resources, we identified a total of 39,899 CpGs with evidence of meQTL within the 

Illumina MethylationEPIC BeadChip that passed our quality control. A two sample test 

of proportions was utilized to see if the proportion of meQTLs in CpGs with a significant 

change over time was higher than the proportion of meQTLs in stable CpGs.

Results

The majority of the previously described CpGs associated with SLE subtypes remained 
stable over time.

In previous work, CLUES cohort participants were clustered into three subtypes according 

to ACR classification criteria at cohort enrollment. We identified 256 CpGs that were 

differentially methylated according to subtype.10 For the current study, we observed the 

dynamics of our previous DNA methylation findings by comparing data collected at two 

time points. Of the 256 CpGs that were associated with disease subtypes, 184 CpGs (71.8%) 

showed stability between the two time points. Since we observed an enrichment of CpGs in 

IFN-responsive genes within the 256 CpGs, we investigated whether there was a difference 

in dynamics between CpGs of IFN responsive genes vs non-IFN responsive genes. We 

found that 53% of CpGs in IFN-responsive genes were stable vs 87% of CpGs in non-IFN 

responsive genes (chi square, p=1.4e-09), indicating that CpGs in IFN-responsive genes 
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are more susceptible to methylation change. Regarding CpG position relative to genes, 74 

(39%) were in gene bodies, 50 (26.3%) in transcription start sites, and 30 (15.7%) in UTR 

regions. Table 1 highlights 20 CpGs with the most variance across clinical clusters10 that 

did not change over time, and the full list of stable CpGs can be found in Table S2. These 

include CpGs in TNK2, RABGAP1L, IRF7, IFI44L, TRIM22 and many IFN-responsive 

genes. DNA methylation within/near these genes has been implicated in SLE in previous 

studies, for example TNK2 with renal disease in CD4+ naïve cells4 and RABGAP1L with 

anti-dsDNA antibody production. Volcano plots of representative stable CpGs are shown in 

Figure S4.

A higher proportion of SLE-subtype associated CpGs changed over time compared to the 
genome-wide methylome.

Although the majority of SLE-subtype associated CpGs were stable, 71 (27.7%) had a 

significant change in methylation (FDR p<0.05, methylation change > 0.03) (Fig 2a). We 

also examined the dynamics of the methylome genome-wide. Paired t-test analysis revealed 

that the methylation level of 2,423 CpGs across the genome changed significantly over a 

period of two years (FDR < 0.05), which is 0.34% of the represented methylome (Fig 2b). 

We also filtered results using a minimum DNA methylation difference (absolute Beta value 

difference > 0.03) and observed 309 CpG sites that demonstrated the minimum difference 

and passed FDR (Fig 3, Table S3). These CpGs were distributed across the genome with 

top results within/near IFI44L, IFIT1, LOC101927924, and MX1. The top 25 results by 

smallest p-value are shown in Table 2. Pathway analysis of the genes containing these 309 

sites identified the human immune response to tuberculosis and RIG-1-like receptor (RLR) 

pathways as the most significant pathways, however, multiple immune pathways were 

represented, including antigen processing, virus response, type II IFN signaling, cytotoxic T 

lymphocytes pathways, and taurine and hypotaurine metabolism (Table 3.) When we looked 

across S1, M1 and M2 clinical subtypes, no significant difference in methylation change 

within changing CpGs was identified between the three subtypes (ANOVA test, FDR >0.05).

In comparison to the genome-wide results, there was strong evidence for enrichment in 

SLE subtype associated CpGs that changed over time (27% vs 0.34%, p= 1.82e-175). 

These included CpGs in IFI44L, MX1 and RAPGAB1L. Sixty-eight of these 71 CpGs 

had a decrease in methylation and only three had an increase in methylation at the second 

time point. An enrichment analysis was performed supporting this finding. In 63 times 

out of 100, no CpG showed a significant difference in methylation (paired t-test FDR > 

0.05, methylation beta difference < 0.03). In 2 samples, 3 CpGs had a significant change 

(p<7e-08, methylation beta difference > 0.03), 5 samples had 5 significant CpGs and 

30 samples 1 signficant CpG. The distribution of CpGs with a significant change in the 

enrichment analysis is shown in figure S5.

CpG sites associated with clinical outcomes

Although disease was stable or quiescent over time in most study participants, a small 

percentage had significant changes in their clinical manifestations, such as changing 

dsDNA titers or development of lupus nephritis. For these cases, we evaluated whether 

CpG sites that changed over time were associated with SLEDAI score, dsDNA antibody 
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positivity and/or lupus nephritis (Table S4). Overall, no CpGs met the threshold of 

significance (p<1.8E-05) but some evidence for association was observed for cg09858955 

in VRK2 (coefficient −1.2, p=0.001), cg09128104 in RARA (beta=0.69 p=0.00036), and 

cg21524061 in TLR6 (beta=045 p=0.0005) with SLEDAI score. These genes are involved 

in granulopoiesis (RARA),24 apoptosis (VRK2)25 and immune activation (TLR6)26; all 

of which are pathways relevant to lupus disease pathogenesis. Top associations with 

dsDNA positivity were cg01971407 in IFITM1 (beta=−0.30 p=0.0003), cg05070493 in 

TRAF3 (beta=−0.06 p=0.0003) and 2 CpGs in PARP9 (cg00959259, beta=−0.029 p=0.0003; 

cg08122652, beta=−0.11 p=0.0004). Similarly, TRAF3 (TNF receptor-associated factor 3) 

is known as a powerful negative regulator of B cell survival and activation,27 IFITM1 is an 

IFN-responsive gene, and PARP9 is associated with macrophage activation.28, 29

Effect of medications on DNA methylation

Since medications such as prednisone and methotrexate can alter the methylome in immune 

cells, we examined whether the changes in methylation at CpG sites were associated with 

the use of particular medications in a repeated measures model, adjusting for age, sex, and 

genetic PCs. Fifteen CpGs out of the 309 (4.9%) had at least one significant association 

with use of an immunosuppressive medication (Table S4). Nine CpGs were correlated with 

prednisone, 5 CpGs with mycophenolate mofetil, and 2 CpGs with azathioprine. There were 

no significant associations with changes in biologics, inhibitors of purine and pyrimidine 

synthesis, calcineurin inhibitors or antimalarials.

Effect of cell proportions on DNA methylation

One of the limitations of utilizing whole blood DNA methylation measures in population-

based studies is that differences in methylation might be due to differences in cell 

proportions between individuals at the time of blood draw or changes taking place in cell 

proportions between blood draws over time. As expected, paired comparisons between the 

6 estimated cell types at the two time points revealed significant changes in proportions 

of monocytes, granulocytes and CD8+ cells (paired t-test p< 0.05). In studies of SLE, 

overadjustment of cell proportion differences may lead to incorrect conclusions, as changes 

in cell proportions may be relevant to disease pathogenesis. To address these issues, we 

initially looked at the adjusted matrix for cell proportions to see if there were any DNA 

methylation changes. Then, to examine the effects of changes in cell proportions on change 

in methylation we utilized the unadjusted matrix and longitudinal models incorporating 

the difference in DNA methylation as outcome and the difference in each cell type as a 

predictor, adjusting for age, sex, and genetic PCs. We observed that 67 CpGs of the initial 

309 (21.6%) that changed over time had a significant correlation with changes in at least one 

cell type estimate (p<2.70E-05). Changes in DNA methylation correlated with changes in 

cell proportions at 64 CpGs for granulocyte estimates, 39 CpGs for CD4+ T cell estimates, 

24 CpGs for CD8+ T cell estimates, 5 CpGs for monocyte estimates, 12 CpGs for B cell 

estimates and 6 CpGs for NK cell estimates. Figure S6 shows the effect sizes of changes 

in DNA methylation in relation to changes in cell proportions. Although the largest number 

of CpGs influenced by changes in cell proportions was for granulocytes, the largest effect 

sizes were observed for the NK cell estimates, for example, cg0571263 (Beta= −20.25 

p=5.9e-08), IFITM1 (cg09026253, Beta= −13.95, p=6.4e-07), and RAB6B (Beta=14.55 
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p=1.6e-05). RAB6B has been shown to be expressed in NK cells as well as MAIT T-cells.30 

Other interesting examples of correlations of change in DNA methylation with change in 

cell proportions were in genes known to be enriched in a particular immune cell type. For 

example, methylation at RPS6KB1 correlates with B cell estimates (cg02095219, beta= 

10.01, p= 4.839e-07), where RPS6KB1 expression is known to be enriched in naïve B cells 

and memory B cells.31 Other examples include CD4+ T cell estimates with methylation 

in B2M (cg03425812, beta=−7.4524419 p= 2.489e-08) and IFIT1M (cg04582010, beta= 

−6.40 p= 4.540e-08), known to be expressed widely in multiple CD4+ T cell subsets.30, 32 

Methylation at B36NT3 (cg16744531, beta= 5.50, p= .00001) was associated with CD8+ T 

cell estimates, shown to be expressed in memory CD8+ T cells; methylation of TNFSF10 
(cg10213935, beta= −6.633 p= .000012) was associated with monocyte estimates, where 

TNFSF10 expression is known to be enriched in intermediate, classical and non-classical 

monocytes. And finally, methylation at IFITM1 (cg05552874, beta= −2.93 p= 2.136e-06) 

and HDAC4 (cg27074582, beta= −1.52681 p= 1.794e-09) was associated with granulocyte 

estimates.

Effect of self-reported ethnicity/race, genetic ancestry and genetic variation on 
methylation changes over time.

There is substantial evidence that DNA methylation differs across ethnic groups. Some 

of these differences are due to genetic variation and some are not explained by genetics 

alone.33, 34 To examine the effects of genetic ancestry as well as self-reported ethnicity/

race, we constructed models with methylation difference over time as the outcome and 

self-reported ethnicity/race or genetic ancestry estimates as predictors, adjusting for age 

and sex. Nine models were generated: one each for self-reported Hispanic, Black, White or 

Asian and genetic ancestry estimates AFR, EAS, AMR, SAS, EUR). Results are shown in 

the supplementary dataset S5. No model had a significant p value for multiple hypothesis 

testing (p<of 3.2 E-05), however there are a few associations that are worth mentioning. The 

top methylation change association was at cg23876832 (no gene name associated with this 

methylation site) with SAS ancestry (p= 3.75E-05). When looking at results with a nominal 

p-value <0.05, we find methylation change associations in 30 CpGs with AFR ancestry, 

5 CpGs with EUR ancestry, 12 with AMR ancestry, 13 CpGs with EAS ancestry, and 12 

CpGs with SAS ancestry. There were few overlaps, with 8 CpGs having an association 

with 2 ancestries. When examining self-report ethnicity/race, the top methylation change 

association fell in cg00569896 (no gene name associated with this cite) with Black race (p= 

1.68 E-04). Results with a nominal p value <0.05 showed methylation change associations 

in 23 CpGs with Black race, 19 CpGs with Asian race, 8 CpGs with Hispanic ethnicity 

and 2 CpGs with White race. Similarly, there were few overlaps, with 5 CpGs showing an 

association of p <0.05 in 2 ethnicity/racial groups. In terms of overlap of CpGs with p<0.05 

between ancestry and self report ethnicity/race, we found 20 CpGs with Black race and 

AFR ancestry, 2 CpGs with Asian race and EAS ancestry, no overlap between Asian race 

and SAS ancestry, 2 CpGs with Hispanic ethnicity and AMR race, and no overlap between 

EUR ancestry and White race. These results suggest that both ancestry and self-report 

ethnicity/race may be influencing methylation change, and primarily at different sites. The 

only exception is the high concordance between CpGs associated with Black race and AFR 

ancestry.
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To test if genetic variation was influencing change in methylation at specific sites, we looked 

at CpGs known to be under genetic control (meQTLs). Of the 309 CpGs that changed over 

time, there were 75 CpG with evidence of meQTL (24%). This is in comparison with 5.5% 

of meQTLs in stable CpGs genome-wide (n=39,824), suggesting an enrichment of meQTLs 

in CpGs with a significant change in methylation over time (two-sample test of proportions 

p=4.8e-47). Of the 72 SLE subtype associated CpGs that changed over time, 24 (33%) are 

meQTLs. This is slightly higher than the proportion of meqtls in SLEs subtype associated 

CpG that did not change over time, but not statistically significant (n=46, 25%, two-sample 

test of proportions p=0.179).

Discussion

In this study, we examined the dynamics of DNA methylation for CpGs previously 

associated with SLE subtypes in a longitudinal cohort of SLE patients. Overall, we observed 

that a large proportion of SLE-subtype associated CpGs did not show significant change 

over two years. However, a much higher proportion of SLE-subtype associated CpGs 

changed over time compared to the genome-wide methylome. Some of the methylation 

changes observered over 2 years in SLE-subtype associated CpGs were associated with 

changes in cell proportions (26%) and medication use (4.5%).

As the epigenome is not static, an important question related to EWAS is if associations 

would change over time. These results are encouraging, providing evidence that overall, the 

methylation status of the majority of CpGs that were previously associated with specific 

SLE subtypes remain unchanged over a 2-year period. Therefore, the blood methylome 

shows potential as a biomarker for disease subtypes. This is further supported by a recent 

longitudinal study examining DNA methylation in circulating granulocytes from SLE 

patients, where authors also observed significant stability of the methylome over a period 

of 4 years.35 With this in mind, we also refined our previous EWAS findings at cohort 

enrollment, selecting CpGs that had the most robust methylation difference between SLE 

subtypes and did not change over time. These candidate CpGs could be further studied 

prospectively at disease onset to examine their prognostic role in predicting SLE subtypes as 

well as potential biomarkers for treatment response.

We observed a very small number of CpGs for which DNA methylation changed 

significantly over time. Interestingly, pathway analysis showed that most of these CpGs 

are involved in immune-related pathways such as intracellular viral sensing pathways, 

antigen processing, IFN response as well as metabolic pathways (taurine metabolism, 

diabetes type II) (Table 3). We attempted to identify the underlying factors driving DNA 

methylation change. Overall, these changes were not correlated with disease activity, 

anti dsDNA antibody titer or lupus nephritis, although most cases in our cohort had 

quiescent disease. Although most of SLE subtype-associated CpGs were stable, there 

was a striking distinction between the increased proportion of SLE-associated CpGs that 

changed over time compared to genome-wide CpGs. One potential explanation for the 

observed progressive hypomethylation at SLE subtype associated CpGs is that PBMCs 

in SLE patients experience persistent exposure to the cytokine milieu inherent in SLE, 

making immune-related CpGs in circulating PBMCs more susceptible to change. This is 
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consistent with most SLE EWAS that demonstrate hypomethylation of immune-related 

genes in comparison with healthy controls as well as for severe SLE phenotypes compared 

to more mild disease.5, 8–10 These findings have been attributed to defects in the enzymes 

responsible for maintaince of DNA methylation (DNA methyltransferases) due to oxidative 

stress.36 Another potential hypothesis is that passive demethylation, the progressive loss of 

methylation over time, could be accelerated in SLE. The premise that passive demethylation 

can occur at different rates in individuals is the basis of epigenetic clocks or biomarkers 

of aging. These can drastically differ from chronological age.37 Whether accelerated 

passive demethylation, or epigenetic aging, occurs in SLE relevant genes and pathways 

is unknown, but should be examined in future longitudinal studies with longer time periods 

of observation.

Studies with large sample sizes (> 1000) have estimated that at least 10% and up to 45% 

of the methylome is influenced by nearby meQTLs.38 When we tested to see if genetic 

variation was influencing change in methylation, we found that a higher proportion of CpGs 

that changed over time had an meQTL association in comparison with stable CpGs. The 

leading hypothesis to explain cis-meQTL effects is that SNPs in protein binding sites alter 

or disrupt the activity of sequence-specific binding proteins such as transcription factors 

of methyl binding proteins which could lead to change in methylation patterns of nearby 

CpGs.39–41 Since transcription factor binding is dynamic, one could postulate that this 

effect could influence the variability of methylation in addition to methylation itself. Other 

longitudinal methylation studies will be needed to corroborate this observation.

As expected, when we examined our initial results in the unadjusted matrix for cell 

proportions, we found that a substantial proportion (26%) of changing CpGs were associated 

with at least one cell estimate. This is an important consideration for studies that use whole 

blood DNA methylation to study the epigenetic landscape in SLE. As cell proportions in 

peripheral blood are of biologic relevance to disease pathogenesis, we are faced with a 

conundrum: how to deal with a potential confounder that could itself be a disease outcome? 

For the current study, we addressed this by initially adjusting for cell proportions and then 

re-examining findings in an unadjusted matrix to assess cell proportion effects. Further study 

of analytic approaches to whole blood DNA methylation data is important given the low 

cost and feasibility of working with whole blood in comparison to sorted or single cells, 

particularly for population-based studies that seek to provide a useful genomic clinical tool 

for precision medicine.

Limitations of this study include a relatively small sample size, which could have reduced 

our ability to detect a larger number of CpG sites that varied over time or fully assess 

the association between self-reported ethnicity/race and genetic ancestry. In addition, the 

detection of methylation fluctuations associated with disease activity was not possible due 

to the clinical quiescence of most participants. We were underpowered to identify additional 

CpGs sites associated with medication use. Finally, an extended time interval of more than 

two years could have yielded different findings. However, there have been few studies that 

have re-examined cross-sectional DNA methylation associations in a longitudinal cohort. 

Our rigorous analytic pipeline addressed potential limitations of studying whole blood DNA 

methylation in longitudinal studies, including effects of changes in cell proportions.
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In summary, we have characterized the DNA methylation dynamics of previously SLE 

associated CpGs in the well characterized CLUES longitudinal cohort. Among these SLE 

subtype-associated CpGs, we have identified CpGs that are stable over time. Given their 

associaton with SLE syubtypes, these CpGs should be evaluated further for their potential 

role as biomarkers of disease outcomes. Additional longitudinal studies may also reveal 

weather SLE and immune related CpGs have an accelerated passive demethylation in 

comparison to the genome-wide methylome. Further study of the methylome dynamics in 

SLE at the time of disease flare and remission may provide additional insight into epigenetic 

programs that may guide the development of precision medicine approaches for SLE.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig 1. Differential DNA methylation analysis.
101 patients were selected for longitudinal DNA methylation analysis from the CLUES 

cohort (Table S1). Data were subjected to rigorous quality control procedures and processed 

for DNA methylation analysis (Fig S1). After removal of outliers/poor performing CpGs, 

we first performed a cell proportion adjusted analysis, and then reexamined our results in 

an unadjusted matrix to report on the effect of cell proportions. ComBat =R package, β= 

methylation beta value.
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Fig 2. DNA Methylation dynamics in an SLE cohort.
Volcano plots of methylation differences between baseline and year 2. Mean methylation 

(Beta-values) are shown, adjusted for cell proportions and methylation plate. (A) SLE-

subtype associated CpGs results, and (B) Genome-wide results. (significance line blue: 

p<1e-05, red: p<5e-8)
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Fig 3. Heat map of CpG sites with a significant methylation change in a 2 year period.
We observed 309 CpGs with a DNA methylation difference (absolute Beta value difference 

> 0.03, FDR <0.05) in a 2 year time period. Each row represents a CpG and each column 

represents an SLE participant.
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Table 1.
Selected candiate CpGs that were stable over time and had the most methylation 
difference between clinical sybtypes at cohort enrollment.

Mean methylation paired t-test, FDR > 0.05. Cohort partipiants were clusters based on ACR classification 

criteria and subcriteria using an unsupervised clustering approach.10 Three clusters were identified. The 

clusters are labelled M (mild), S1 (severe 1) and S2 (severe 2).

cpg Gene
CpG 

Position

Mean methylation beta values

Variance*

IFN-Alpha 
Responsive 

Gene

IFN Gamma 
Responsive 

Genecluster M cluster S1 cluster S2

cg16987437 SP100 Body 0.623 0.536 0.481 0.0178 No No

cg15065340 TNK2 5’UTR 0.623 0.555 0.499 0.0152 No No

cg19188021 ODF3B 5’UTR 0.264 0.174 0.142 0.0142 No No

cg17114584 IRF7 Body 0.513 0.451 0.399 0.0137 Yes Yes

cg22012079 IFI44L 5’UTR 0.586 0.501 0.462 0.0126 Yes Yes

cg12461141 TRIM22 TSS1500 0.493 0.423 0.380 0.0115 No No

cg14333162 RSAD2 TSS1500 0.698 0.647 0.602 0.0092 Yes Yes

cg26531432 RABGAP1L 5’UTR 0.698 0.634 0.605 0.0087 No No

cg20343278 PTPRM Body 0.323 0.361 0.304 0.0087 No No

cg03540917 SPINK2 Body 0.599 0.627 0.669 0.0086 No No

cg15378061 NA NA 0.186 0.231 0.257 0.0084 No No

cg15331332 HLA-F Body 0.599 0.568 0.538 0.0081 No No

cg00272009 PARP14 TSS1500 0.631 0.581 0.552 0.0080 Yes Yes

cg25178683 LGALS3BP TSS1500 0.554 0.509 0.470 0.0077 Yes Yes

cg13045500 NA NA 0.659 0.604 0.569 0.0072 No No

cg06168856 OAS1 Body 0.630 0.598 0.575 0.0067 Yes No

cg05167074 SHKBP1 Body 0.555 0.511 0.489 0.0067 No No

cg06708931 NA NA 0.906 0.867 0.828 0.0064 No No

cg06650861 DDX60 5’UTR 0.868 0.830 0.792 0.0064 Yes Yes

cg06376949 IFIT5 TSS1500 0.255 0.210 0.177 0.0063 No No

*
Anova F test
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Table 2.
CpGs with significant change over a 2 year time period in the CLUES cohort.

The top 20 results are shown here. The full list of 309 CpGs can be seen in table S3.

Mean methylation beta value Paired t-test

CpG Gene Name Time 1 Time 2 Delta fold change p FDR

cg13452062 IFI44L * 0.31 0.14 0.17 −1.17 8E-25 5.97E-19

cg07929412 LOC101927924 0.75 0.70 0.05 −0.08 9E-22 3.33E-16

cg23570810 IFITM1 * 0.49 0.41 0.08 −0.20 2E-21 4.32E-16

cg05696877 IFI44L * 0.31 0.19 0.12 −0.60 5E-21 8.45E-16

cg21549285 MX1 * 0.40 0.26 0.14 −0.52 7E-19 7.94E-14

cg14628347 ITGB2 0.63 0.67 0.03 0.05 1E-18 1.33E-13

cg25984164 RABGAP1L * 0.71 0.63 0.07 −0.11 4E-18 3.29E-13

cg10549986 RSAD2 0.15 0.10 0.05 −0.51 4E-18 3.29E-13

cg09948374 RABGAP1L * 0.60 0.55 0.05 −0.10 6E-18 4.65E-13

cg07815522 PARP9 * 0.45 0.34 0.11 −0.31 1E-17 6.88E-13

cg05552874 IFIT1 * 0.40 0.32 0.08 −0.25 2E-17 1.14E-12

cg22862003 MX1 * 0.41 0.33 0.09 −0.27 1E-16 5.06E-12

cg18467790 RADIL 0.52 0.58 0.06 0.10 1E-16 5.06E-12

cg16526047 ISG15 0.49 0.46 0.03 −0.07 2E-16 6.43E-12

cg24678928 DDX60 * 0.70 0.61 0.09 −0.15 2E-16 6.43E-12

cg20062691 ISG15 * 0.66 0.62 0.05 −0.07 3E-16 1.01E-11

cg07469075 PAMR1 0.58 0.52 0.06 −0.11 7E-16 2.44E-11

cg11317199 TRIM14 0.59 0.63 0.04 0.06 2E-15 5.99E-11

cg08565796 HKR1 0.32 0.35 0.03 0.08 2E-15 8.09E-11

cg12439472 EPSTI1 * 0.31 0.21 0.10 −0.48 3E-15 8.94E-11

cg05883128 DDX60 * 0.33 0.27 0.06 −0.20 4E-15 1.19E-10

cg13100600 AGRN * 0.51 0.54 0.03 0.06 5E-15 1.52E-10

cg07839457 NLRC5 * 0.24 0.17 0.07 −0.40 6E-15 1.56E-10

cg25267487 0.67 0.71 0.03 0.05 7E-15 1.86E-10

cg13207212 APBB2 0.56 0.52 0.03 −0.06 1E-14 2.81E-10

*
CpGs associated with SLE subtypes at cohort enrollment.
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Table 3.

Pathway analysis of 309 CpG sites that showed significant methylation changes (FDR <0.05) and an absolute 

methylation Beta value difference of > 0.03 over 2 years. Pathway analysis was performed with ToppFun.21

ID Name Source p value FDR B&H Genes 
from 
Input

Genes in 
Annotation

M39748 The human immune response to 
tuberculosis

MSigDB C2 BIOCARTA 
(v7.3)

2.82E-08 1.70E-05 6 23

M39583 Novel intracellular components of 
RIG-I-like receptor (RLR) pathway

MSigDB C2 BIOCARTA 
(v7.3)

1.20E-05 3.60E-03 6 61

M1462 CTL mediated immune response 
against target cells

MSigDB C2 BIOCARTA 
(v7.3)

1.59E-04 0.023 3 13

M39909 Host-pathogen interaction of 
human corona viruses - Interferon 
induction

MSigDB C2 BIOCARTA 
(v7.3)

1.64E-04 0.023 4 33

M22023 Antigen Processing and 
Presentation

MSigDB C2 BIOCARTA 
(v7.3)

2.01E-04 0.023 3 14

M39363 Type II interferon signaling (IFNG) MSigDB C2 BIOCARTA 
(v7.3)

2.58E-04 0.023 4 37

M40067 SARS-CoV-2 Innate Immunity 
Evasion and Cell-specific immune 
response

MSigDB C2 BIOCARTA 
(v7.3)

2.68E-04 0.023 5 68

M15913 RIG-I-like receptor signaling 
pathway

MSigDB C2 BIOCARTA 
(v7.3)

3.28E-04 0.024 5 71

M39837 Cytosolic DNA-sensing pathway MSigDB C2 BIOCARTA 
(v7.3)

3.98E-04 0.025 5 74

MAP00430 MAP00430 Taurine and 
hypotaurine metabolism

GenMAPP 4.22E-04 0.025 2 4

M19708 Type II diabetes mellitus MSigDB C2 BIOCARTA 
(v7.3)

6.53E-04 0.036 4 47

M39543 Structural Pathway of Interleukin 1 
(IL-1)

MSigDB C2 BIOCARTA 
(v7.3)

8.27E-04 0.042 4 50
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